PROGRAM INSTRUMENTATION WITH SOURCE CODE

DIMITRIOS GLYNOS (@dfunc)
dimitris@census-labs.com

FOSSCOMM 2018 HERAKLION, CRETE

WWW.census-labs.com

> WHAT IS PROGRAM INSTRUMENTATION?

* The process of adding special instructions to a
program in order to:

— Monitor / measure its performance
— Diagnose errors
— Write trace information

Program Execution Flow

PROGRAM srumentaron PROGRAM PROGRAM instRumeNTATION
CODE COBE CODE CODE £00E

CENSUS S.A. A
www.census-labs.com

> |T'S AN EXPERIMENT! _é

* Much like experiments in real life

— Fact #1: One can only measure if the measurement
code is executed
* Program may need to be driven to those points

— Fact #2: The program may not behave in the same
way when instrumented

* Need for lightweight / unobtrusive instrumentation

CENSUS S.A. A
www.census-labs.com

> EXAMPLE USES

* Many domains
— Debugging
— Tracing
— Profiling for program optimization
— Memory management error detection
— Threading error detection
— Code coverage measurements (for testing etc.)

CENSUS S.A. A
www.census-labs.com

> A CRUDE EXAMPLE

Code:

int add(int a, int b) {
/* instrumentation code */
fprintf(stderr, "%s() called at %1d\n",
__FUNCTION_,
time(NULL));
return a + b;

Instrumentation output:
add() called at 1537547793

CENSUS S.A. A
www.census-labs.com

> INSTRUMENTATION FLAVOURS

* Source Code vs Binary Instrumentation

— Will the instrumentation code have access to
source-level semantics?

» Static vs Dynamic Analysis Techniques

— Static analysis is program analysis for software at
rest

— Dynamic analysis is program analysis for software
during execution

CENSUS S.A. A
www.census-labs.com

> STATIC-ONLY INSTRUMENTATION?

* Modifying the code to aid static analysis

* Not very common

— Most instrumentation use cases employ dynamic
analysis at some point

— Intermediate Language level information is usually
sufficient for static analysis purposes

* How about “marking” parts of the code?
— Compile-time checks based on attributes or

annotations
CENSUS S.A. A
www.census-labs.com

> ANNOTATION ASSISTED STATIC ANALYSIS

int bar(int*p, int g, int *r) _ attribute_ ((monnull(1l,3))):

int foo(int *p, int *qg) {
return !p ? bar(g, 2, p)

4 '?' condition Is true J

2 Null pointer passed as an argument to a 'nonnull' parameter J

: bar(p, 2. Q);

From https://clang-analyzer.llvm.org/annotations.html#attr_nonnull

CENSUS S.A. A
www.census-labs.com

> INSTRUMENTATION FOR DEBUGGING

* Compilers do not normally emit
instrumentation code for debugging purposes
— Options =g and —ggdb in GCC add debugging data

* Such instrumentation code is usually inserted

— by the developer (e.g. print stack information
through libunwinad)

— by the debugger (in-memory program rewriting)

CENSUS S.A. A
www.census-labs.com

> LIBUNWIND

A portable stack unwinding C API.
— Get call chain
— Get function name and start / end addresses
— Are we executing signal code?
— Examine register contents

— Perform operations within the execution context
of another process (ptrace)

— https://www.nongnu.org/libunwind/

CENSUS S.A. A
www.census-labs.com

> LIBUNWIND EXAMPLE

Example code from https://github.com/daniel-thompson/libunwind-examples/blob/master/unwind-local.c

// stack backtrace() using libunwind $./unwind-local

int cmp(const void *a, const void *b) Ox400bad: (cmp+0x8)

g backtrace(); Ox71f09f4341207: (bsearch+0x57)
exit(0); 0x40096b: (main+0x5b)

Ox7f09f432a830:

(__libc_start _main+0xfo)

Ox4009b9: (_start+0x29)

int data[] = {1, 2, 3, 4}; @x0: -- no symbol name found
int needle = 4;

bsearch(&needle, data,
lengthof(data),
sizeof(data[@]), cmp);
return 1;

main(int argc, char **argv)

CENSUS S.A. A
www.census-labs.com

> INSTRUMENTATION FOR CODE COVERAGE

* Tracking code flow for (unit) testing purposes
— Track which parts of the code were exercised
— See gcov (GCC) / SanitizerCoverage (LLVM, plugins!)
* Profiling
— Measure the number of calls made to a function
— Measure where the program spent significant time
— Perform optimizations based on the above data
— See gprof (binutils)
» Hardware Assisted Branch Tracing
— See perf + Intel PT (5t generation Intel Core or better)

CENSUS S.A. A
www.census-labs.com

> GCOV INSTRUMENTATION EXAMPLE

installing instrumentation and generating graph data (prog.gcno)
$ gcc -fprofile-arcs -ftest-coverage -o prog prog.c

Vanilla version # Instrumented Version

mov %rsi,-ox10(%rbp) mov %rsi,-ox1e(%rbp)

mov $0x400d78, %edi mov 0x2043a3(%rip),%rax

callg 400720 <puts@plt> # 6053e0 < gcov@.print_stat info>
add $0x1,%rax
mov %rax,0x204398(%rip)
6053e0 < gcovl.print_stat info>
mov $0x403868, %edi
callg 400d40 <puts@plt>

» Each instrumented point raises a counter and results are flushed to
a data file at program exit (prog.gcda)

CENSUS S.A. A
www.census-labs.com

> GCOV INSTRUMENTATION EXAMPLE

run the software to generate coverage data (prog.gcda)

$./prog <args>

merge graph and measurement data in one report with gcov (prog.c.gcov)
$ gcov prog

File ‘prog.c'

Lines executed:67.44% of 43

Creating ‘prog.c.gcov’

$ cat prog.c.gcov

1706: 37:switch (S_IFMT & (stat _buffer->st mode)){
1605: 38: case S _IFREG: printf("Filetype: Regular File\n"); break;
HitHH: 39 case S _IFSOCK: printf("Filetype: Socket\n"); break;

Line 37 got 1706 invocations, Line 38 got 1605 while Line 39 got none.

CENSUS S.A. A
www.census-labs.com

> TRANSFORMING GCOV QUTPUT

LCOV - code coverage report

Coverage

Current view: top level - example/methods - iterate.c (source / functions)
Lines: 100.0 %
100.0 %

. Test: Basic example (view descriptions)
2016-12-20 14:12:28 Functions:
s Lines: hit” [N | Bronches: |4 taken [not taken [not executed Branches: 100.0 %

Brasch data Line data Source code
+ mothods/iterate.c

+ Calculate the sum of a given range of integer nusbers.

* This particular method of isglesentation works by way of brute force,
it iterates over the entire while adding the pumbers to finally
offoct, w're able to easily detect

[]
: : e. argo
. al sum. As 3 positive side
+ overflows, 1.e. situations in which the sun would exceed the capacity
* of an integer variable
]

#include <stdio.h
#include <stdlib.h>
#inclue *iterate.h®

+int iterate_get sim (int win, int wax)
{

— Alternate output formats

forc (L g Lo oy 64)
/* Mo can detect an overflow by chacking whether the new
50 would becone negative. */

(HTML, XML etc.)
— Integration with L W] |

Line Branch Exec Source

GCC Code Coverage Report

Exec Total Coverage
6 7 85.7 %

Directory: .
Lines:

// example.cpp

Continuous Integration

return 1;

i

environments

¥
}

int main(int argc, char* argv(l)

* Jenkins —

return 0;

.
e Travis Cl
Generated by: GCOVR (Version 4.1)

CENSUS S.A.
www.census-labs.com

> CODE COVERAGE AND FUZZING

* Fuzzing (or Fuzz Testing) is a black box security
testing technique “for discovering faults in
software by providing unexpected inputs and

monitoring for exceptions”
— Fuzzing, M. Sutton, A. Greene, P. Amini, Addison Wesley, 2007

 Stack unwinding instrumentation provides
fuzzers with info about the root cause of a fault

— if the same bug was triggered twice, record it once

» Code coverage instrumentation provides fuzzers
with information about unexplored paths

CENSUS S.A. A
www.census-labs.com

> THE AFL FUZZER

* American fuzzy lop (AFL)

— Popular fuzzer that employs compile-time
iInstrumentation and genetic algorithms to
automatically generate test cases that trigger new

states in the tested program
— http://lcamtuf.coredump.cx/afl/

— Has identified an impressive number of memory
corruption vulnerabilities in common FOSS

software
CENSUS S.A. A
www.census-labs.com

> AFL INSTRUMENTATION IN A NUTSHELL

* Instruments entry point, branch labels and conditional
branching at assembler level

e Instrumentation records directed branches and hit
counts

* A parent program (afl-fuzz) provides mutated inputs to
the target program running in a child process
— No need to execve() for each input, the instrumented child

listens for parent commands and handles input in forked
process (see forkserver)

— Instrumentation data are shared with parent via a Shared
Memory segment

— Mutated inputs that discovered new “branches” are added
to the input queue (they do not replace existing inputs)

CENSUS S.A. A
www.census-labs.com

> AFL DEMO

CENSUS S.A. A
www.census-labs.com

> |[DENTIFYING MEMORY ACCESS ERRORS

 AddressSanitizer

— Instrumentation added by compiler to detect
invalid memory access errors

— Supported by LLVM and GCC
— Detects use after free issues, buffer overflows, etc.

— Instrumentation uses a “shadow” copy of memory
for book keeping purposes

— A runtime library (libasan) replaces malloc & free

CENSUS S.A. A
www.census-labs.com

> |[DENTIFYING MEMORY ACCESS ERRORS

» AddressSanitizer Algorithm Instrumentation prefix

p " : if (IsPoisoned(address))
— “redzones” are memaory regions

with marked bytes used to track ! ReportError(address,
overwrites

kAccessSize, kIsWrite);
“redzones” are noted as } o
“noisoned” regions Original Code

- " _ *address = ...;
— Any “poisoned” region accessed

OR
is reported and leads to abort() ... = *address;

Stack Buffer Protection Heap Buffer Protection

REDZONE Vqriablgs are intermingled o) \[3 malloc() returns r_egions
with poisoned redzones surrounded by poisoned redzones

VARIABLE ALLOCATED

: MEMORY _ _
REDZONE Redzones are unpoisoned free() poisons freed region and

at function exit REDZONE delays its reallocation

CENSUS S.A. A
www.census-labs.com

> WHAT DRIVES AddressSanitizer?

» AddressSanitizer will need something to drive the target
application into interesting code paths
— Unit Testing? A Fuzzer?

$./buggy-program-compiled-with-asan afl_outputs/crash_input_001
==74917==ERROR: AddressSanitizer: heap-buffer-overflow on address 0x60b00000aff4 at pc
0x0000004008dc bp Ox7ffdb826d790 sp Ox7ffdb826d7860
WRITE of size 1 at Ox60bo00OOaff4 thread TO
#0 0x4008db in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x4008db)
#1 0x400927 in main (/home/f/afl/buggy-program-compiled-with-asan+0x400927)

0x60b00OOVaff4 is located O bytes to the right of 100-byte region
[0x60b000ORaT90,0x60b0VRRLaTT4)
allocated by thread TO here:

#0 Ox7fa@leafc602 in malloc (/usr/lib/x86_64-linux-gnu/libasan.so.2+0x98602)

#1 0x40089b in offbyone (/home/f/afl/buggy-program-compiled-with-asan+0x40089b)
SUMMARY: AddressSanitizer: heap-buffer-overflow ??:0 offbyone

CENSUS S.A.
www.census-labs.com

> AddressSanitizer REDZONE AFTER OFF-BY-ONE

Shadow bytes around the buggy
Ox0cle7fff95a0: fa fa fa fa fa fa fa
Ox0cle7fff95b0: fa fa fa fa fa fa fa
Ox0cle67fff95c0: fa fa fa fa fa fa fa
Ox0cle7fff95do: fa fa fa fa fa fa fa
Ox0cle7fff95e0: fa fa fa fa fa fa fa

=>0x0cl67fff95f0: fa fa 00 00 00[04]fa
Ox0cle7fff9600: fa fa fa fa fa fa fa
Ox0cle7fff9610: fa fa fa fa fa fa fa
Ox0cle7fff9620: fa fa fa fa fa fa fa
Ox0cle7fff9630: fa fa fa fa fa fa fa
Ox0cle7fff9640: fa fa fa fa fa fa fa

CENSUS S.A. A
www.census-labs.com

> OTHER SANITIZERS

 Other interesting sanitizers are:
— ThreadSanitizer
* data race detector (GCC + LLVM)
— MemorySanitizer
* uninitialized memory read detector (LLVM only)
— UndefinedBehaviourSanitizer
* Catches undefined behavior (GCC + LLVM)
— LeakSanitizer
* Memory leak detector (GCC + LLVM)

CENSUS S.A. A
www.census-labs.com

> INSTRUMENTATION TO HINDER BUG EXPLOITATION

* |dea: detect bug exploitation & terminate application
— Stack Protector (GCC / LLVM)

» Adds “canary” value between local variables and saved frame pointer
» moves function pointer variables before others

» Abort() if “canary” value is overwritten at function exit through
(presumably) a stack buffer overflow

— Shadow Call Stack (Experimental, LLVM)

» Keep function’s return address in “shadow” memory and checks prior
to function exit

— CFI (protects statically linked part of code, LLVM)

 Build control flow graph and check via instrumentation if execution will
be transferred to whitelisted points in the code

CENSUS S.A. A
www.census-labs.com

> KERNEL INSTRUMENTATION

kprobe / uprobe

— Live modification of kernel & userspace code (by the
kernel) for instrumentation purposes

tracepoints / LTTng
— tracepoints for significant events in Linux kernel code

DTrace / SystemTap / bpftrace / perf

— Configure trace-points, collect trace information and inject
code (where applicable)

eBPF

— An in-kernel virtual machine for dynamic code execution

CENSUS S.A. A
www.census-labs.com

> KERNEL FUZZING

» syzkaller
— An unsupervised coverage-guided kernel (system call) fuzzer
— https://github.com/google/syzkaller

« Kernel CONFIG_KCOQV option

— Required by syzkaller

— Works in conjunction with -fsanitize-coverage=trace-pc
compiler instrumentation

— exposes kernel code coverage information in a form suitable for
coverage-guided fuzzing

« Kernel CONFIG_KASAN option
— AddressSanitizer for the Linux Kernel (x86_64 & ARMb4)

CENSUS S.A. A
www.census-labs.com

> BUILDING YOUR OWN INSTRUMENTATION

 Take into consideration
— Speed requirements
— Threading requirements (reentrant code)
— Memory usage requirements
— Data storage requirements
* |s there something like an instrumentation standard?

— Yes, see OpenGroup’s “Application Response Measurement”
(ARM) standard

* What's a portable way to apply transformations to code?

— See LLVM IR Pass code
CENSUS S.A. A
www.census-labs.com

> LLVM IR PASS

* LLVM allows to run code transforms as an
Intermediate Representation (IR) Pass

Front End —»>machine code

Clang LLVM proper

Source: https://www.cs.cornell.edu/~asampson/blog/llvm.html

CENSUS S.A. A
www.census-labs.com

> INJECTING A LLVM IR PASS

$ git clone https://github.com/sampsyo/llvm-pass-skeleton.git
$ cat llvm-pass-skeleton/skeleton/Skeleton.cpp

virtual bool runOnFunction(Function &F) {
errs() << "I saw a function called " << F.getName() << "!\n";
return false;

}

cd llvm-pass-skeleton

mkdir build

cd build

cmake ..

make

clang -Xclang -load -Xclang build/skeleton/libSkeletonPass.* something.c
saw a function called main!

Source: https://www.cs.cornell.edu/~asampson/blog/llvm.html

CENSUS S.A. A
www.census-labs.com

> REFERENCES

https://gcc.gnu.org/onlinedocs/gcc/Geov.html
https://sourceware.org/binutils/docs/gprof/
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
http://halobates.de/blog/p/410

https://www.amazon.com/Fuzzing-Brute-Force-Vulnerability-
Discovery/dp/0321446119

http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html
https://gcc.gnu.org/onlinedocs/gcc-8.2.0/gcc.pdf
https://clang.llvm.org/docs/UsersManual.html
http://lcamtuf.coredump.cx/afl/technical details.txt
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://collaboration.opengroup.org/tech/management/arm/
https://www.cs.cornell.edu/~asampson/blog/llvm.html

CENSUS S.A.
www.census-labs.com

https://gcc.gnu.org/onlinedocs/gcc/Gcov.html
https://sourceware.org/binutils/docs/gprof/
https://software.intel.com/en-us/blogs/2013/09/18/processor-tracing
https://github.com/torvalds/linux/blob/master/tools/perf/Documentation/intel-pt.txt
http://halobates.de/blog/p/410
https://www.amazon.com/Fuzzing-Brute-Force-Vulnerability-Discovery/dp/0321446119
http://www.brendangregg.com/blog/2018-10-08/dtrace-for-linux-2018.html
https://gcc.gnu.org/onlinedocs/gcc-8.2.0/gcc.pdf
https://clang.llvm.org/docs/UsersManual.html
http://lcamtuf.coredump.cx/afl/technical_details.txt
https://clang.llvm.org/docs/ShadowCallStack.html
https://clang.llvm.org/docs/ControlFlowIntegrity.html
https://collaboration.opengroup.org/tech/management/arm/
https://www.cs.cornell.edu/~asampson/blog/llvm.html

Sl 7“““/

