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Abstract

Exploit payload encoding allows hiding malicious
payloads from modern Intrusion Detection Sys-
tems (IDS). Although metamorphic and polymor-
phic encoding allow such payloads to be hid-
den from signature-based and anomaly-based IDS,
these techniques fall short when the payload is be-
ing examined by IDS that can trace the execu-
tion of malicious code. Context-keyed encoding
is a technique that allows the attacker to encrypt
the malicious payload in such a way, that it can
only be executed in an environment (context) with
specific characteristics. By selecting an environ-
ment characteristic that will not be present dur-
ing the IDS trace (but will be present on the tar-
get host), the attacker may evade detection by ad-
vanced IDS. This paper focuses on the current re-
search in context-keyed payload encoding and pro-
poses a novel encoder that surpasses many of the
limitations found in its predecessors.

1 Introduction

Spotting an attacker is not an easy task. Mod-
ern Intrusion Detection Systems (IDS) rely on both
event analysis (e.g. detecting suspicious-looking
outgoing connections), and (known) malware iden-
tification (e.g. rootkits, shellcode1 etc.) to tell
whether your infrastructure is under attack or not.

This paper explores the theme of shellcode de-
tection on the wire, a mechanism which allows the
early mitigation of highly sophisticated attacks.
Specifically, we will be exploring IDS evasion tech-
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1The term shellcode refers to the instructions injected by

an attacker to a vulnerable service that typically provide the
attacker with a command interpreter (e.g. a UNIX shell).

niques for shellcode; techniques that allow penetra-
tion testers to bypass some of the most advanced
network IDS available today.

Shellcode typically consists of the following three
elements:

• NOP sled

• Payload

• Return Address

When an attacker uses a memory corruption bug to
copy her shellcode on the address space of the vul-
nerable process, it is very probable that the actual
memory address where the shellcode will be copied
to will not be known beforehand. To circumvent
this issue, shellcode writers create a zone of junk
instructions, known as NOP sled, that directs the
CPU’s execution flow towards the malware Pay-
load. Overwriting a saved instruction pointer or a
function pointer with a Return Address that points
somewhere within this junk space, is all that is then
required for the shellcode Payload to get executed.

There are three categories of shellcode-detecting
IDS. The first category uses signature matching to
spot parts of a shellcode on the wire. For exam-
ple, Buttercup [1] searches for return addresses that
belong to software that has known vulnerabilities.
Snort [2] on the other hand, looks for traces of
known payload chunks and NOP sleds. Of course,
this category of IDS cannot detect traces of un-
known (a.k.a. 0-day) attacks. More importantly, if
a particular shellcode is recoded in a different way,
it will not be caught by any IDS belonging to this
category.

To recode shellcode, attackers and penetration
testers borrow techniques from virus developers
(which have been evading signature-matching an-
tivirus software for almost three decades now).

1
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Metamorphism is a common antivirus-evading
technique, that replaces a set of instructions by an
equivalent set of different instructions. Polymor-
phism is a similar technique that hides a set of in-
structions by encoding them. The real instructions
will eventually be decoded and executed at run-
time. The problem with this second technique, is
that the decoder code may be easily spotted, since
it will be the same for every encoded payload. To
solve this problem one can make the decoder meta-
morphic.

The Metasploit [3] framework provides an excel-
lent metamorphic / polymorphic encoder for shell-
code, known as Shikata Ga Nai. This encoder is ca-
pable, in theory, of bypassing any signature-based
IDS.

The second category of IDS applies anomaly de-
tection to incoming traffic. The IDS is first trained
with canonical / normal traffic and is then fed real
traffic in order to spot anomalous behaviour. The
Snort SPADE (Statistical Packet Anomaly Detec-
tion Engine) [4] is a preprocessor plugin that per-
forms anomaly detection on incoming traffic. Un-
fortunately, this plugin is not available for newer
versions of Snort. However, an alternative proposal
[5] has been made for a similar plugin.

Training an IDS in order to minimise the number
of false positive reports is not a trivial task. Fur-
thermore, false negatives are also an issue for IDS
that employ anomaly detection. It is possible to
use a metamorphic encoder (such as Metasploit’s
“Alpha2” encoder) to recode a shellcode in a form
that contains bytes that match the statistical prop-
erties of the real traffic. In such a case, the gener-
ated shellcode will evade detection by any IDS that
simply checks for the statistical properties of input
bytes.

The third category of IDS “blindly” scan all in-
put traffic for patterns of code. Specifically, they
apply static and dynamic analysis to input bytes
(as if they were valid instructions) in order to dis-
cover code with properties similar to those of shell-
code. Polychronakis et al. have proposed such a
system for detecting shellcode on the wire, using
emulation [6]. During his Troopers’09 presentation,
R. R. Branco pointed out [7] that a similar system
had been patented by Check Point Software Tech-
nologies Ltd. and that it could be in use by the
company’s firewall product [8].

Static analysis is not capable of determining

alone if a particular series of bytes is normal traffic
or a polymorphic shellcode. Dynamic analysis, on
the other hand, is capable of detecting that a set
of bytes constitutes a malware payload, since dy-
namic analysis executes the actual payload within
an emulated environment. Unfortunately, this is a
slow process that might have to be performed for a
large number of packets on a congested link. Thus,
IDS performing dynamic analysis do not operate
online but rather analyze traffic offline and report
back whenever they have a significant find.
|)ruid presents a technique in [9], with which

he is able to hide a malicious payload from an
IDS performing dynamic analysis. Specifically, the
malicious payload is encoded with a key that de-
pends on the environment of the vulnerable ser-
vice. When the payload executes within the vulner-
able host, it retrieves the key from the environment
and decodes itself as normal. However, when the
payload is executed within some other environment
(e.g. NIDS, debugger, tracer etc.) where the cor-
rect key is not available, the payload body will not
be able to decode properly and a software excep-
tion will occur. Software exceptions are a common
phenomenon during the dynamic analysis of nor-
mal traffic and so the IDS will not be able to deci-
pher from this if it’s dealing with some malware or
not. This technique is called “Context-keyed Pay-
load Encoding” and we will see in the next sections
how this can be applied in a practical manner to
exploits used in penetration tests.

2 Context-keyed Payload En-
coders

Context-keyed Payload Encoders (or CKPE for
short) are instruction encoders that allow the exe-
cution of the encoded payload only within environ-
ments with specific characteristics. They can be
used to slow down the process of reverse engineer-
ing a shellcode containing a secret method of ex-
ploitation, but they are most effective as measures
for evading automatic shellcode detection software.

A CKP encoder performs the following tasks:

1. Receives the key and the payload from the
user.

2. Encodes/encrypts the payload using the key.
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3. Creates a key generator stub to be used at run-
time.

4. Creates a decoder stub to be used at runtime.

5. Returns the combined stubs and encoded pay-
load to the user.

The actual encoding can be done with any poly-
morphic algorithm. For the CKP encoders that
will be shown in the next sections, we have used
the Shikata Ga Nai encoder which processes blocks
with a 32-bit key. At runtime the key is passed
from the CKPE-specific key generator stub to the
Shikata Ga Nai decoder by means of a register
(eax), thus keeping the stack and heap intact.

Key generators create encoder-specific keys.
They are used both at runtime (for generating the
key on the vulnerable host) but also during the
construction phase of the exploit (to figure out the
key with which the payload will be encoded). For
this second use, key generators are implemented as
separate utilities, so as to allow users to generate
key values within the environments of remote hosts.
The key value provided by such a utility is passed
to the CKP encoder by means of a command line
argument.

For our CKP encoders, we have decided to build
upon the Metasploit framework, contributing new
encoder modules and hoping to make CKPE a com-
modity for all penetration testers! The Metasploit
framework is an open source Ruby-based frame-
work for penetration testing that offers a wide va-
riety of exploitation methods, wrappers and en-
coders.

3 Memory-based encoders

The simplest form of context-keyed encoding en-
crypts the payload using a key taken from a specific
location in the vulnerable process’ memory. Al-
though simplistic in nature, this approach is very
effective against emulation-based shellcode detec-
tors, since there is no way of telling appart whether
this memory was accessed on purpose (malware)
or by accident (due to the interpretation of normal
traffic as instructions). Memory-based encoders are
also Operating System agnostic, requiring only that
the CPU on which they will execute will be of a
particular architecture (e.g. x86, x86 64 etc.).

|)ruid has implemented a memory-based CKP
encoder for the Metasploit Framework [9]. In order
to find information that remains static throughout
the execution of a process, the tool smem-map [10]
is used. Joshua Drake (jduck) has implemented a
similar encoder for Metasploit that checks if a sin-
gle bit is on or off at a specific memory address.

Address Space Layout Randomisation (ASLR)
[11] can be an issue here (esp. in conjuction with
Position Independent Executables [12]). If such a
page address randomisation strategy is employed
by the targeted host’s operating system, then the
decoder will probably not find the context key at
the intended memory location and the decoding
process will produce garbage instructions.

4 CPUID-based encoder

The cpuid x86 instruction [13] provides the pro-
grammer with information about the processor.
This information is broken down into multiple vec-
tors and each vector’s data is stored in the eax,
ebx, ecx and edx registers. To get the number of
available vectors describing Basic Processor Infor-
mation, one simply calls the cpuid instruction with
the eax and ecx registers set to 0. The actual num-
ber of available vectors depends on the processor
model. To get information about a specific vector,
the programmer calls cpuid with the vector’s index
number in the eax register.

Both I. Kotler [14] and R. R. Branco [7] use the
“Vendor ID” part of the Basic Processor Informa-
tion as a context key in their respective CKPE al-
gorithms. Much like the memory-based encoder,
the cpuid-based encoder is OS-agnostic and relies
only on the processor architecture. In this paper
we will introduce a new key generator that utilises
all available data from the Basic Processor Infor-
mation vectors and thus generates a richer 32-bit
context key. Specifically, our approach XORs the
register contents of the relevant vectors and stores
the resulting value in the key register eax.

Listing 1 shows the relevant key generator code.
Since cpuid clobbers the four general purpose reg-
isters (eax, ebx, ecx and edx), we formulate the
key in esi and move it to eax in the key generator
epilogue.

The cpuid instruction needs to be called for
two different types of operations. In the first call,
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Listing 1: CPUID-based Key Generator

x o r l %es i , %e s i
x o r l %edi , %ed i

cpu id loop : movl %edi , %eax
x o r l %ecx , %ecx
cpuid
x o r l %eax , %e s i
cmpl %es i , %eax
jne n o t f i r s t t i m e
l e a l 0x1(%eax ) , %ed i

n o t f i r s t t i m e : x o r l %ebx , %e s i
x o r l %ecx , %e s i
x o r l %edx , %e s i
sub l $1 , %ed i
jne cpu id loop
movl %es i , %eax

it will provide the number of available vectors N .
All subsequent calls will request the information
for a particular vector. In our code, we use the
same loop (see cpuid loop) for both types of
cpuid calls. To achieve this, we call cpuid in the
following way:

cpuid(eax, ecx)
with eax : 0→ N → N − 1→ ...→ 1,
and ecx : 0.

This makes the code smaller (32 bytes) and thus,
more accessible to exploits requiring small pay-
loads.

The cpuid key of a remote host can sometimes
be predicted. This particularly applies to virtu-
alised hosts that share the same emulated CPU,
but also to computer hardware (think servers) that
are shipped with specific processor options...

5 Time-based encoder

The context key can also be built out of data that
will be present at the execution environment for a
limited period of time. In essence, this invalidates
the use of the shellcode outside of a selected time-
frame.

An example context key for this case is tempo-
ral data. |)ruid has shown that system timers can
be used for the decoding of shellcode payload [9].

Listing 2: time(2)-based Key Generator

x o r l %ebx , %ebx
l e a l 0xd(%ebx ) , %eax
i n t $0x80
xor %ax , %ax

Specifically, the context key can be made out of
a set of bits from a timer, that remain constant
within the desired timeframe. In a similar fash-
ion, the Hydra polymorphic encoder [15] uses the
time(2) system call to get the number of seconds
since the epoch2 and then constructs a context key
from the high order bits of the system call’s result.

Listing 2 shows a key generator based on the 16
most significant bits of the result of time(2). This
provides the attacker with an execution window
of approximately 18 hours. Although this CPKE
method exhibits a key generator with a small foot-
print (10 bytes) and the key value can be predicted
for remote hosts, it still has a number of shortcom-
ings. Firstly, it depends on an OS-specific system
call to get the timer information. Secondly, the
time(2) system call can be easily emulated on a
NIDS (since it does not require access to any type of
context information) and thus the payload may not
evade detection. Nevertheless, M. Miller has shown
that timer information can also be extracted from
memory locations of a target process [16]. Such a
key generator would depend on the operating sys-
tem and target application, but it would evade de-
tection from NIDS that employ a minimal emula-
tion environment.

6 Filesystem-based encoder

Filesystem (meta-)data can be used as a source for
CKPE keys. This is a novel approach that builds on
the assumption that a NIDS will not have access to
the filesystems of the hosts it protects. For security
and practical reasons this assumption holds true for
many setups.

Our key generator builds a key based on the out-
put of the stat(2) system call, which returns infor-
mation about a file (file size, owner, creation time
etc.). Specifically, it performs an XOR operation

200:00:00 UTC, January 1st, 1970.
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Listing 3: stat(2)-based Key Generator

f l d z
fn s t env −0xc(%esp )
popl %ebx
jmp over
FILENAME

over : add $8 , %ebx
l e a l FILELEN(%ebx ) , %edx
x o r l %eax , %eax
mov %al , (%edx )
l e a l −0x58(%esp ) , %ecx
mov $0xc3 , %a l
i n t $0x80
movl 0x2c(%ecx ) , %eax
x o r l 0x48(%ecx ) , %eax

between the integer representing the file size and
the integer representing the last modification time
of the file.

The size of a remote file can be predicted if the
target host is using an operating system based on
binary packages; spotting the version of a target
service may be enough information to deduce which
package is installed on the target host and ulti-
mately, discover the size of any file contained in
that package. Also, many GNU/Linux distribu-
tions (including Debian) install files with the last
modification time set to a value found in the related
binary package. This modification time refers to
the last update made to these files by the package
maintainer and can be easily deduced by examining
the related binary package.

Listing 3 shows a key generator based on the
st size and st mtime fields of the stat record
(struct stat) that belongs to FILENAME. The
length of FILENAME is stored in FILELEN and is
used by the above key generator to terminate the
FILENAME string with a zero byte. The address of
the label over, the contents of FILENAME and the
value of FILELEN need to be computed dynamically
by the encoder. This can be trivially done in Metas-
ploit using Ruby and the Rexx library.

This key generator is fairly small in size (32 bytes
plus the size of the FILENAME string) but is also
OS-specific, due to the system call used to access
the file information. What is interesting to note, is
that this encoder acts like a temporal data-based

encoder if the examined file is later removed, re-
named or moved to another directory.

7 Using the encoders

Our implementation of the cpuid, time(2) and
stat(2) CKPE methods, presented in the previ-
ous sections, can be downloaded from here [17] as
a patch for the Metasploit Framework. Due to the
absense of a Metasploit class for key generators,
each CKPE method has been implemented as a
separate Metasploit Encoder.

Here is an example of generating an encoded
shellcode using the stat(2)-based encoder and the
“/bin/ps” file:

$ cd metasploit/trunk

$ ./tools/context/stat-key /bin/ps

0xbebaf012

$ ./msfpayload linux/x86/exec CMD=/bin/sh \

R > /tmp/raw_payload

$ ./msfencode -e x86/context_stat -t elf \

-i /tmp/raw_payload -o /tmp/encoded_payload \

STAT_KEY=0xbebaf012 STAT_FILE=/bin/ps

[*] x86/context_stat succeeded with size 106

(iteration=1)

$ chmod +x /tmp/encoded_payload

$ /tmp/encoded_payload

sh-3.2$

As we can see the STAT KEY and STAT FILE com-
mand line options are responsible for passing the
key to the actual encoder.

CKPE can be used to evade detection from auto-
mated shellcode analysis tools. Be warned though,
that CKPE is not capable of hiding the payload
from reverse engineers. Additional anti-debugging
mechanisms must be added, if the payload or key
generator contain secret code.

In its present form, our key generator code con-
tains static instructions. In order for a CKP en-
coded payload to evade signature-based detection,
one must make the key generator stub metamor-
phic, or encode both payload and stubs with a poly-
morphic encoder.

By multiply encoding a payload with CKPE, we
can make both the automated and manual analysis
of a packet more difficult. Notice though, that there
is no reason for using a particular CKPE method
more than once.
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8 Conclusions

Context-keyed Payload Encoding is a technique
used by attackers (and penetration testers) to hide
their shellcode from modern Intrusion Detection
Systems. However, CKP encoding is not applicable
only to shellcode; its use can be extended to other
domains as well. For example, one can create PHP
code that unpacks a malicious payload only when
certain data are available at a local database.

Context-keyed encoded payloads can be detected
reliably only through a rich emulation environment
that is identical to the target execution environ-
ment. For Host-based IDS this is somewhat easier
to implement and in fact there have been several
proposals in this field (see [18] for a full blown sys-
tem emulation for honeynet nodes, or [19] for an on-
demand emulation of the target process that shares
memory pages with the original process). However,
the detection of context-keyed encoded payloads by
Network IDS remains an open issue. The main
cause of this is the limited context these systems
provide during the dynamic analysis of incoming
traffic.

We will be focusing part of our future NIDS re-
search efforts on this topic.
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